Cómo Encuadernación la energía de un núcleo puede determinarse

Un núcleo atómico está compuesto por protones y neutrones apretados , llamados colectivamente nucleones , que se mantienen unidos por la " fuerza nuclear fuerte " . La energía requerida para vencer la fuerza nuclear fuerte , y de ese modo descomponer un núcleo , es la energía de enlace del núcleo .

Con la excepción de hidrógeno , los núcleos de todos los los elementos químicos contienen o bien el mismo número de protones y neutrones o más neutrones que protones . El núcleo de un átomo de hidrógeno , el elemento más simple , es un solo protón .

La proporción de neutrones a protones ( n /p) en los núcleos de los elementos aumenta gradualmente , en orden de número atómico , llegando a un valor límite de alrededor de 1.5 para el elementos más pesados ​​. Masa de un núcleo

Las masas de los átomos y los núcleos se miden en " unidades de masa atómica " , símbolo U , donde U se define como exactamente 1/12 de la masa de un átomo de C - 12 . Tenga en cuenta que la "masa atómica " no debe ser confundido con la unidad de masa atómica : . Masa atómica es la masa de un átomo dado en unidades de masa atómica

La masa de un núcleo es siempre menor que la suma de las masas de sus nucleones . La diferencia de masa , o " defecto de masa " , se debe a que la energía se libera cuando los nucleones se combinan para formar un núcleo.
Masa-energía Equivalencia

La energía liberada , por unidad de masa , en la formación de núcleos es enorme . Es tan grande que tiene una significativa masa equivalente , dada por la ecuación de Einstein : E = [C al cuadrado ] M , donde E es la energía en Julios , C es la velocidad de la luz en metros (m ) por segundo cuadrado y M es . masa en kilogramos (kg ) guía

Esta ecuación se utiliza para convertir una masa dada de una cantidad equivalente de energía; o para convertir una cantidad dada de energía para una masa equivalente .
formación de un núcleo

Considere la formación de un (Fe ) núcleo de hierro de protones y neutrones : Fe tiene una masa atómica de 56 años, por lo tanto, el núcleo contiene 30 neutrones y 26 protones; la masa de un núcleo Fe es 55.90638 U; Por lo tanto, la masa de un protón es 1,00728 U y la masa de un neutrón es 1,00866 U.

La diferencia de masa (M dif ) entre un núcleo Fe y sus nucleones constituyentes es: M = diff ( 26 x 1,00728 U ) + ( 30 x 1,00866 U) - . 55 90638 U = 56.4491 U - U = 55.90638 0.5427 U.
Determinación de la Energía de enlace

Tomando nota de que un masa de 1 gramo ( g ) es igual a 6,022 x ( 10 elevado a la potencia 23 ) U, que es " número de Avogadro " de U , la ecuación de Einstein se utiliza entonces para determinar la diferencia de energía ( E diff ) , o la energía de enlace de la núcleo Fe, de la siguiente manera :

E diff = [ 2,998 x ( 10 elevado a la potencia 8 ) m /segundo )] cuadrado [ x 0,5427 U] x [ 1 g /6,022 x ( 10 elevado a la potencia 23 ) U] x [ 1 kg /1,000 g] = 8,100 x ( 10 elevado a la potencia de -11 ) kg x ( m cuadrado) /segundo cuadrado = 8,100 x ( 10 elevado a la potencia de -11 ) Joules .

la energía de enlace por nucleón , por tanto, es: 8,100 x ( 10 elevado a la potencia de -11 ) /56 nucleones = 1,446 x [ 10 elevado a la potencia -12 ] Joules /nucleón
.